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1 Introduction

In 2003 Michael Farber introduced a new numerical invariant - topological complexity of a space.
The goal of this research was a “topologization” of certain situation in robotics, mainly, in motion
problem for robots. Currently, we have a developed branched theory with numerous versions of
topological complexity, as well as several interesting applications.

Here I write a survey concerning these ideas. Since topological complexity is a special case of
Schwarz genus, and it is a close relative to Lusternik–Schniremann category, we expose all these
three concepts together.

2 Preliminaries

The word “space” always means “completely normal topological space” unless something other is
said explicitly.
The word “smooth” always means C∞ (function or manifold).
All maps are assumed to be continuous unless something other is said explicitly. The identity map
X → X is denoted by idX .
All functional spaces of the form Y X are assumed to be equipped with compact-open topology.
We use notation Z, R, and C for the sets of integer, real, and complex numbers, respectively,
We denote by I the closed interval [0, 1].
We use the notation := as “equal by definition”.
We use the sign ' for homotopy of maps or homotopy equivalences of spaces
We use the abbreviation “iff” for “if and only if”;
“Fibration” means a Hurewicz fibration over a path connected finite CW base, unless some other
is said explicitly.

3 Schwarz genus, or sectional category

Recall that a section of a map f : X → Y is a map s : Y → X such that fs = idY .

Definition 3.1. Let ξ = {p : E → B} be a fibration over a base B. A Schwarz genus, or sectional
category secat ξ of ξ is a minimal number k such that there exists an open covering {U0, . . . , Uk} of
B with the following property: for each i = 0, . . . , k the fibration

p−1(Ui)→ Ui
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has a section. (In other words, si is a local section of p.) We also put secat ξ = −1 if B = ∅.

This concept was introduced by Albert Schwarz in [S] under the name “genus”. James [J1] proposes
to replace the overworked term ”genus” by ”sectional category”. (Of course, the word “category”
is also overworked, but the adjective “sectional” softens the situation.)

Remark 3.2. The original definition by Schwarz differs by 1 from 3.1. However, now the Defini-
tion 3.1 is commonly accepted, see e.g. [CLOT].

Recall that any two fibers of a fibration ξ : E → B are homotopy equivalent (since B is path
connected, see preliminaries), and we define the homotopy class of the fibers by the homotopy fiber
of ξ. Sometimes we write ξ = {F → E → B} where F is the homotopy fiber of ξ.

Given a map f : Y → X, define the Serre fibrational substitute of f as follows. Put

E = {(ω, x)|ω ∈ Y I , x ∈ X,ω(1) = f(x)}

and define f̂ : E → X as f̂(ω, x) = x and ϕ : E → Y, ϕ(ω, x) = ω(1). It is easy to see that

f̂ : E → X is a fibration, f̂ = fϕ, and ϕ is a homotopy equivalence, see [Sp].

We start with elementary facts. Given two fibrations

ξ = {p : E → B} and ξ′ = {p′ : E′ → B′},

consider their product ξ × ξ′ = {p× p′ : E × E′ → B ×B′}.

Proposition 3.3 ([S, Prop. 21]). secat(ξ × ξ′) ≤ secat ξ + secat ξ′.

This theorem dates back to Bassi [Bas], who proved the similar inequality for Lusternik-Schnirelmann
category.
Given a fibration ξ = {p : E → B} and a map f : X → B, consider the induced fibration f∗ξ over
X.

Proposition 3.4 ([S, Prop. 7]). secat f∗ξ ≤ secat ξ.

Theorem 3.5 ([S, Theorem 4]). Given a commutative ring R and fibration ξ = {p : E → B},
suppose that there are cohomology classes ui ∈ H∗(B;R), i = 1, . . . , k such that p∗ui = 0, i =
1, . . . , k and that u1 ^ · · ·^ uk 6= 0. Then secat ξ ≥ k.

Theorem 3.5 hints (motivates) the following definition.

Definition 3.6. Given a fibration ξ = {p : E → B} and a commutative ring R, define the
cup-length of ξ, denoted by clR(ξ) or clR(p), to be the maximal number m such that there exist
cohomology classes ui ∈ H∗(B;R), i = 1, . . . ,m such that p∗ui = 0, i = 1, . . . ,m and that u1 ^
· · ·^ um 6= 0.

So, Theorem 3.5 claims that secat ξ ≥ cl(ξ).

Remark 3.7. In fact, 3.5 states a more general claim: we can consider the local coefficient systems
Ai, i = 1, . . . , k on B and cohomology classes ui ∈ H∗(X;Ai), and get the analog (and generaliza-
tion) of the above mention claim. In this case we have

u1 ^ · · ·^ uk ∈ H∗(B;A1 ⊗ · · · ⊗Ak).
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To go further, we need to recall what is the iterated fiberwise join, see [Hu]. The join X ∗ Y of two
spaces X and Y is a quotient space

(X × Y × I) ∼
where the equivalence relation ∼ is generated by the equivalences
(x, 0, y1) ∼ (x, 0, y2) for all x ∈ X, y1, y2 ∈ Y and (x1; 1; y) ∼ (x2; 1; y) for all y ∈ Y, x1, x2 ∈ X.
More generally, given two maps f : X → Z and g : Y → Z, we can construct the join f ∗Z g :
X ∗Z Y → Z of f and g over Z by setting

X ∗Z Y = {[x, t, y] ∈ X ∗ Y |f(x) = g(y)} and (f ∗Z g)([x, t, y]) = f(x).

We can iterate the join construction. In particular, given a fibration ξ = {p : E → X} with the
homotopy fiber F , we have the n-fold fiberwise join ξ(n) = E ∗X ∗ · · · ∗X E over X. It is a fibration
whose homotopy fiber is F ∗n, the n-fold join of F with itself.
There is a more explicit construction of ξ(n) as ξ(n) = {(t1e1 + · · · tnen)} where e1, . . . en are in
same fiber of ξ and t1, . . . , tn are non-negative real numbers such that t1 + · · · + tn = 1. The
identifications are such that tiei is independent of ei when ti = 0.

Theorem 3.8 ([S, Theorem 3]). For any fibration ξ, secat ξ < n iff the fiberwise join ξ(n) has a
section.

Theorem 3.9 ([S, Theorem 5]). Given a fibration ξ = {p : E → B} with the homotopy fiber F ,
assume that F is (k − 1) connected. Then

secat ξ <
dimB + 1

k + 1
.

Below we consider three important examples of sectional category: Lusternik–Schnirelmann cate-
gory, topological complexity, and higher (or sequential) topological complexity. It is worth saying
that LS category appeared in 1929, see [LS1], the Schwarz’s paper [S] appeared in 1958 (in Russian),
and topological compexity appeared in 2003, [F1].

4 Lusternik–Schnirelmann category

A good source for the Lusternik–Schnirelmann category is [CLOT].

Definition 4.1. Given a map f : X → Y , an f -categorical set is an open subset U of X such
that f|U : U → Y is null-homotopic. An f -categorical covering is a covering {Ui} of X such that
every set Ui is f -categorical. The Lusternik–Schnirelmann category cat f of f is defined to be the
minimal number k such that there exists f -categorical covering {U0, U1, . . . , Uk} of X. If no such
k exists, we write cat f =∞. Furthermore, we set catX := cat(idX).

Proposition 4.2 ([BG]). For every diagram

X
f−−−−→ Y

g−−−−→ Z

we have: cat(gf) ≤ min{cat f, cat g}.

Proposition 4.3 ([CLOT, Theorem 1:30]). If X ' Y then catX = catY . In other words, catX
is a homotopy invariant of X.
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Proposition 4.4. For every fibration ξ = {p : E → B} we have secat ξ ≤ catB.

For the proof, note that, for any subset A of B that is contractible in B, the fibration ξ admits a
section over A.

The main application of the Lusternik–Schnirelmann category is the following.

Theorem 4.5 ([LS1, LS2]). Let f : M → R be a smooth function on a closed smooth manifold
M , and Crit f denote the number of critical points of f . Then catM + 1 ≤ Crit f .

Remark 4.6. Historically, Lusternik and Schnirelmann attacked the Poincarè conjecture (1905)
that every Riemannian manifold with the topology of a 2-dimensional sphere has at least three
closed geodesics that form simple closed curves without self-intersections. (See [B] for detailed
publication.) By the way, a general ellipsoid gives us exactly 3 geodesics. Furthermore, we can
regard geodesics as critical points of the length function on a suitable spaces of curved. So, it makes
sense to study critical points on a manifold as a preliminary research. This is how Lusternik and
Schnirelmann Theorem 4.5 appeared.

The following theorem relates Lusternik–Schnirelmann category to sectional category. Given a path
connected space X and x0 ∈ X, put PX = {ω ∈ XI , ω(0) = x0} and define the fibration

{η = ηX : PX → X, p(ω) = ω(1)}.

It worth noting that the homotopy fiber of ηX is ΩX.

Theorem 4.7 ([S, Theorem 18]). We have catX = secat η.

Because of this and Proposition 3.3, we get the following claim.

Corollary 4.8. We have cat(X × Y ) ≤ catX + catY if the spaces X and Y are path connected.

Let η∗kX : PkX → X denote the k-fold fiberwise join ηX ∗ · · · ∗ ηX over X. Theorem 3.8 implies the
following claim.

Corollary 4.9. The fibration η∗kX has a section iff catX < k.

There is another (but homotopy equivalent) description of the fibration η∗kX : PkX → X given by
Ganea, see [G], the so-called fiber-cofiber construction. See [CLOT, Definition 1.59 and Example
1.61].

Corollary 4.10. If X is (k − 1)-connected with k > 0, then

catX <
dimX + 1

k
. In particular, catX ≤ dimX

k
.

This follows from Theorem 3.9 if we recall that the homotopy fiber ΩX of ηX is (k− 2)-connected.



On topological complexity 35

5 Cup-length

Definition 5.1. Given a commutative ring R and a space X, define the cup-length of X with
coefficients in R, denoted by clR(X) as the maximal number k such that u1 ^ · · · ^ uk 6= 0 for

ui ∈ H̃∗(X;R).

In other words, for X path connected we have cl(X) := cl(ηX) in accordance with Definition 3.6.

Theorem 3.5 implies the following corollary.

Corollary 5.2 ([FE]). We have clR(X) ≤ catX.

Pay attention that the paper [FE] appears before the paper [S]. Moreover, [FE] was stated in terms
of homology and intersection of cycles: at that time the cohomology language was not ”up in the
air”.

Remark 5.3. More generally, the corollary Corollary 5.2 holds if we use local coefficients systems
as in Remark 3.7. Moreover, we can consider classes ui ∈ E∗(X) for a multiplicative cohomology
theory (spectrum) E and state an obvious analog of Corollary 5.2.

We explain the proof of Corollary 5.2 for X path connected. Apply Theorem 3.5 to the case when
ξ is the fibration η = {p : PX → X}. Now note that p∗ui = 0 because PX is contractible,

Remark 5.4. It is instructive and nice to present the following sketch of the proof of Corollary 5.2.
Let catX = k. We prove that cl(X) ≤ k by proving that u0 ^ u1 ^ · · ·^ uk = 0 for all u0, . . . , uk.
Indeed, let {U0, . . . , Uk} be a categorical covering for X. We have:

u0|U0
= 0, (u0 ^ u1)|(U0∪U1) = 0, . . . ,

(u0 ^ · · ·^ uk)|(U0∪···∪Uk) = 0.

But U0 ∪ · · · ∪ Uk = X.

Examples 5.5.

1. Real projective space RPn.
We know that H∗(RPn;Z/2) is the truncated polynomial ring

Z/2[u]/(un+1), u ∈ H1(RPn;Z/2).

So, clZ/2(RPn) ≥ n, and so cat(RPn) ≥ n Thus, cat(RPn) = n because of Corollary 4.10.

2. Complex projective space CPn. We know that H∗(CPn) is the truncated polynomial ring

Z[x]/(xn+1), x ∈ H2(CPn).

So, clZ(CPn) ≥ n, and so cat(CPn) ≥ n. Since CPn is simply-connected, we conclude that
cat(CPn) ≤ n because of Corollary 4.10. Thus, cat(CPn) = n.

3. Torus Tn. We know that

H∗(Tn) = Z[x1, . . . , xn|,dimxi = 1, x2i = 0, i = 1, . . . , n].
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So, clZ(Tn) ≥ n, and so cat(Tn) ≥ n. Furthermore, dimTn = n, and so cat(Tn) ≤ n because of
Corollary 4.10. Thus, cat(Tn) = n.

4. More generally, let M2m be a closed simply-connected symplectic manifold with a symplectic
form ω. This means the ω is a closed non-degenerate 2-form on M . In particular, for the de Rham
cohomology class [ω] we have

0 6= [ω]m ∈ H2m(M ;R).

So, clR(M) ≥ m, and hence catM ≥ n. Since M is simply-connected, we conclude that cat(M) ≤ m
by Corollary 4.10. Thus, catM = m.

5. Sphere Sn. For completeness, we prove that cat(Sn) = 1. We have catSn > 0 because the sphere
is not contractible. Furthermore, cat Sn ≤ 1 because Sn is the union of two contractible subspaces
(hemispheres). Thus, cat Sn = 1.

6 Category weight

Definition 6.1. Given a spectrum E and u ∈ E∗(X), define a category weight of u, denoted by
wgtu, as

wgt(u) = sup{k|ϕ(u∗) = 0 for every maps ϕ : A→ X with catϕ < k}.

The main application of category weight is the following generalization of Theorem 3.5: Given a
commutative ring R and ui ∈ Hi(X;R), assume that u1 ^ · · ·^ uk 6= 0. Then

catX ≥
k∑
i=1

wgtui.

For the proof, see e.g. [R2, Theorem 1.12].

Remark 6.2. The idea ot category weight does back to Fadell and Husseini [FH]. They considered
the definition as in 6.1, but used the inclusions A → X. They used the term “category weight”
and notation cwgt. However, their construction was not a homotopy invaiant, i.e. there examples
of homotopy equivalences f : X → Y and an element u ∈ H∗(Y ) with cwgt(f∗(u)) 6= cwgtu.
To see that Fadell–Husseini construction is not a homotopy invariant, see [R2, Corollary 1.9 and
Example 1.10]. The homotopy invariant version was proposed by Rudyak [R2] (called “strict
category weight”) and Strom [Str] (called “essential category weight”). Later both authors agreed
to use the term ”category weight” and the notation wgt.

Examples 6.3. 1. ([FH]). Let p be an odd prime, let β be the Bockstein homomorphism
β : Hi(−;Z/p)→ Hi+1(;Z/p). Let

P k : Hi(−;Z/p)→ Hi+2k(p−1)(−;Z/p)

be the Steenrod reduced power. Then we have wgt(βP k(u)) ≥ 2 for u ∈ H2k+1(X;Z/p)) provided
u 6= 0. In particular, wgt(β(u)) ≥ 2 for u ∈ H1(X;Z/p), u 6= 0. (In fact, wgt(β(u)) = 2.)
As an application, consider the lens space L = S2n+1/(Z/p) where p is an odd prime. Let u ∈
H1(L;Z/p) be a generator. Then

H∗(L;Z/p) = Z/p[u, βu]/(u2, (βu)n).
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Hence, u(βu)n−1 6= 0, and wgt(u(βu)n−1) ≥ 2n + 1 since wgt(βu) ≥ 2. So, catL ≥ 2n + 1. Thus
catL = 2n+ 1 (Krasnosel’skii).

2. Let π be a discrete group and Bπ = K(π, 1) be the classifying space for π. Then wgtu = k for
every u ∈ Hk(Bπ;G) and for every coefficient group G, see [R1, Str]. Since the infinite lens space
S∞/(Z/p) is K(Z/p, 1), we have another proof of the Krasnosel’skii equality catL = 2n + 1 from
item 1.

3. For every non-trivial (i.e. not containing zero) Massey product 〈u, v, w〉 and every x ∈
H∗〈u, v, w〉 we have wgtx ≥ 2, [R2].

4. Let M2n be a closed symplectic manifold with a symplectic form ω, and let [ω] ∈ H2(M ;R) be

the de Rham cohomology class of ω. Suppose that

∫
S2

f∗ω = 0 for all smooth maps f : S2 → M

(the so-called sympletically aspherical manifolds). Then wgt[ω] = 2. This claim is an important
ingredient for the proof of the Arnold conjecture, [RO].

Farber and Grant [FG2] generalized the notion of category weight (see Section 6) for sectional
category as follows. Given a fibration p : E → B and cohomology class u ∈ H∗(B), define the
category weight with respect to p, denoted by wgtp to be the maximal integer k such that f∗u = 0
for all maps f : Y → B with secat f∗(p) ≤ k. Here f∗p : E′ → Y denotes the pull-back fibration of
p along f .

Below in Section 7 we will consider topological complexity of a space S, denoted by TC(X) as the
sectional category of a fibration

π : XI → X ×X,π(α) = (α(0), α(1)).

In particular, we can introduce a notion of TC-weight as wgtπ. Among other applications of wgtπ,
Farber and Grant got a lot of information of TC for some lens spaces. For more information on
TC of lens spaces see [Gon, GZ].

7 Motion planning problem

As a good source on motion planning see [L, LV].
In robotics, motion planning problem (also known as the navigation problem or the piano mover’s
problem) is finding a path that moves the robot from the source to destination. One of mathematical
descriptions of the problem looks as follows. Let X be a path connected topological space that
we regard as the configuration space of a mechanical system. Points of X represent states of the
system, and a continuous motion of the system can be regarded as a continuous path α : I → X.
Here α(0) is the initial point and α(1) is the final point. Since X is path connected, we are able to
move a point to any other one.
A motion planning algorithm on X is a rule that assigns a path α : I → X to a pair (α(0), α(1)).
More formally, consider the fibration

ζ = ζX = {π : XI → X ×X,π(α) = (α(0), α(1))}.

In this way, a motion planning algorithm is a map (not necessarily continuous) s : X ×X → XI

such that πs = idX×X . In other words, a motion planning algorithm is a section of ζ. It would
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be nice to work with continuous motion planning, i.e. to have the section s to be continuous.
However, life is complicated: continuous sections exist if and only if the space X (as well as X×X)
is contractible, [F3]. So, it seems reasonable to consider a partition of X × X = tAi so that
every part Ai admits a continuous section si of ζ over Ai. This leads to the concept of topological
complexity, which we turn to.

8 Topological complexity: a bridge from topology to robotics

Definition 8.1 (Farber[F3]). Let X be a path-connected CW space of finite type. Topological
complexity of a space X (denoted by TC(X)) is the sectional category of ζX . So, TC(X) = secat ζX .

To relate topological complexity with motion planning problem, recall (in section 7) that we con-
sidered the partition of X × X = tAi so that every part Ai admits a section of ζ over Xi. In
particular, Ai ∩ Aj = ∅ for i 6= j. The number of these parts shows how complicated can X be.
How is this number related to TC(X)? The answer is that, for X good enough, there is a partition
{Ai} as before whose number #Ai is equal to TC(X)+1. To explain this in greater detail, we need
to recall the notion of Euclidean Neighborhood Retract (ENR), see [D2]. For us, the advantage of
ENR is the property that, given two open subsets A and B of an ENR, the difference A \B is also
an ENR.

Theorem 8.2 ([F3]). Let X is a polyhedron in RN with TC(X) = k. There exist a motion
planning algorithm s : X ×X → XI and a partition X ×X = A0 t · · · tAk such that
(i) each Ai is an ENR;
(ii) for each i the restriction s|Ai

: Ai → X ×X is continuous.

Thus, if TC(X) = k then there exists a motion planning algorithm s : X ×X → XI that has k+ 1
domains of continuity of s, and each domain of continuity is an ENR.

In Section 9 you will see many calculations of TC. To warm up the interest to the subject, we note
that TC(S2n+1) = 1 and TC(S2n) = 2, see below. Pay attention to the remarkable contrast with
the equality cat(Sn) = 1 for all n > 0.

Another interesting point is the following theorem that relates TC with problem of immersion of
projective space to Rm.

Theorem 8.3 (Farber–Tabachnikov–Yuzvinsky[FTY]). For any n 6= 1, 3, 7 the number TC(RP) is
equal to the smallest k such that RPn admits an immersion to Rk. Furthermore, for n = 1, 3, 7 we
have TC(RPn)) = n.

Remark 8.4. Here we present two notes on a difference between Lusternik–Schnirelman category
and topological complexity.

1. Let p : X̃ → X be a covering map. Then cat X̃ ≤ catX. However, if X = S3 × S3 ∨ S1 and X̃
is the universal covering space of X then TC(X) ≤ 3 and TC(X̃) ≥ 4), see [Dr1].

2. We have cat(X ∨ Y ) = max{catX, catY }. However, TC(S1) = 1 while TC(S1 ∨ S1) = 2. More
on TC(X ∨ Y ), see [Dr1].

It worth noting that many modifications of topological complexity have currently appeared. For
instance, in [DD] the authors introduce geodesic complexity, by considering broken geodesics on a
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Riemannian manifold. Another example: Mescher [Me] notes that a real robot has a shape, and
hence one loses a lot of information by simply modeling the robot as a point in X. In this way, the
author suggests to consider not points in PX but frames on a Riemannian manifold. One more
example considers symmetric topological complexity [FG1]: the case when motion from one state
A to another state B, prescribed by the algorithm, is the time reverse of the motion from B to A.

In this spirit, it is not unexpected that people suggest equivariant versions of topological complexity,
by considering a group G acting on a space X. I do not discuss it here and quote the references [BK,
CG, LM].

9 Higher, or sequential topological complexity

Rudyak [R4, BGRT] generalized the Farber’s concept of topological complexity as follows. Given
a space X, consider a fibration

ζn = ζn,X = {en : XI → Xn}

en(α) =

(
α(0), α

(
1

n− 1

)
, . . . , α

(
n− 2

n− 1

)
, α(1)

)
where α ∈ XI .

Definition 9.1 ([R4]). A higher, or sequential topological complexity of order n of a space X
(denoted by TCn(X)) is the sectional category of ζn. So, TCn(X) = secat ζn.

It is easy to see that Farber’s complexity TC(X) is equal to TC2(X).

We show how TCn is related to motion planning theory. Recall that TC(X) is related to motion
planning algorithm when a robot moves from a point to another point. Similarly, TCn(X) is
related to motion planning problem whose input is not only an initial and final point but also n−2
intermediate additional points.

Now we establish some properties of TCn. It worths to note that many properties of TCn are
obvious generalization of Farber’s TC, and we exploit the ideas of Farber and his collaborators (see
the references) in our research.

Proposition 9.2. TCn(X × Y ) ≤ TCn(X) + TCn(Y ).

It follows from Proposition 3.3.

Proposition 9.3. If X is (k − 1)-connected then

TCn(X) ≤ ndimX

k
.

It follows from the definition of TC and Theorem 3.9, if note that the homotopy fiber of the diagonal
X → Xn is (k − 2)-connected.

Consider two fibrations ξ = {E → B} and ξ′ = {E′ → B} and a commutative diagram

E
f−−−−→ E′y y

B B
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Lemma 9.4. We have secat ξ ≤ secat ξ′. Moreover, if f is a fiber homotopy equivalence over B
then secat ξ = secat ξ′.

Proof. If s : A → E is a local section of ξ over A then fs is a local section of ξ′ over the same
A. Hence, secat ξ ≤ secat ξ′. Furthermore, if f is a fiber homotopy equivalence over B then there
exists a homotopy inverse h : E′ → E over B, see [D1], and hence secat ξ ≤ secat ξ′. Thus,
secat ξ = secat ξ′. q.e.d.

Theorem 9.5. If the spaces X and Y are homotopy equivalent then TCn(X) = TCn(Y ). In other
words, TC is a homotopy invariant.

For n = 2 see [F3, Theorem 3]. Now we show the proof for all n.

Proof. Take a homotopy equivalence f : X → Y . Then f yields a morphism of fibrations

ζ = {XI → Xn} → {Y I → Y n} = ζ ′.

The morphism ζ → ζ ′ can be decomposed as

ζ → f∗ζ ′ → ζ ′

where the morphism ζ → f∗ζ ′ induces the identity map idXn on bases. We have secat ζ = secat f∗ζ ′

by Lemma 9.4, and secat g∗ζ ′ ≤ secat ζ ′ by Proposition 3.4. So secat ζ ≤ secat ζ ′. The existence of
a homotopy inverse Y → X to f implies that secat ζ = secat ζ ′. q.e.d.

Theorem 9.6. For all n we have

catXn−1 ≤ TCn(X) ≤ catXn ≤ TCn+1(X).

For the proof of first inequality see [BGRT, Prop.3.1]. The second inequality follows from Propo-
sition 4.4.

In particular, TCn(X) ≤ TCn+1(X).

Open Question 9.7. Do there exist a non-contractible spaceX and number n such that TCn(X) =
TCn+1(X)?

Proposition 9.8. If X is not contractible then TCn(X) ≥ n− 1 for all n ≥ 2.

Indeed, TCn(X) ≥ catXn−1 ≥ n− 1. For the second inequality see [CLOT, Theorem 1.47].

Theorem 9.9. If G is a path-connected H-space (e.g. a topological group) then TCn(G) =
catGn−1.

For a topological group and n = 2 this is proved in [F2], for n > 2 see [BGRT]. For arbitrary
H-spaces see [LupSch].
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10 Some calculations and examples

Definition 10.1. Let X be a path connected CW space and d = dn : X → Xn a diagonal
map, d(x) = (x, · · · , x). A zero-divior class x ∈ H∗(Xn) is the class with d∗(x) = 0. The zero-
divisor ideal for X is the kernel of the map d∗ : H∗(Xn) → H∗(X). A zero-divisor cup-length
zcl(X) = zcln(X) for X is a maximal number k such that

u1 ^ · · ·^ uk 6= 0 and d∗(ui) = 0, for all ui ∈ H∗(Xn).

As usual, we can and shall use a generalization of zcl as in Remark 3.7.

Theorem 10.2. TCn(X) ≥ zcln(X).

Proof. It follows from Theorem 3.5 if we replace fibration p : E → B in Theorem 3.5 by ζn and
recall that the maps en : XI → Xn and dn : X → Xn are homotopy equivalent. q.e.d.

Proposition 10.3. For any two path connected CW spaces X,Y of finite type with torsion free
homology we have

zcln(X × Y ) ≥ zcln(X) + zcln(Y ).

Proof. This follows from the definition of zcl and Künneth formula. q.e.d.

The following theorem was proved in [F3] for n = 2 and in [R4] for n > 2.

Theorem 10.4. TCn(S2k−1) = n− 1 and TCn(S2k) = n for all n ≥ 2 and k > 0.

Proof. First, prove that TCn(S2k+1) = n− 1. Take a unit tangent vector field v on S2k+1. Given
x, y ∈ S2k+1, y = −x, let [x, y] denote the path determined by the geodesic semicircle joining x to
y and such that the vector v(x) is the direction of the semicircle at x. If x 6= y, let [x, y] denote
the path determined by the shortest geodesic from x to y.
Given x1, . . . , xn in S2k+1, let [x1, x2, . . . , xn] denote the contactenation of paths [xi, xi+1], i =
1, . . . , n− 1, i.e. the path

[x1, x2, . . . , xn] := [x1, x2][x2, x3] · · · [xn−1, xn] in S2k+1.

Now we have the (non-continuous) section

(S2k+1)n → (S2k+1)I , (x1, . . . , xn) 7→ [x1, . . . , xn].

Let Uj ⊂ (S2k+1)n, j = 0, . . . , n − 1 consists of tuples (x1, . . . , xn) such that the family
(x1, x2), (x2, x3), . . . , (xn−1, xn) in S2k+1 has exactly j antipodal pairs (xi, xi+1). Now each Uj
is a domain of continuity for the section (S2k+1)n → (S2k+1)I . Hence, TCn(S2k+1) ≤ n − 1. On
the other hand, TCn(S2k+1) ≥ n− 1 because of Proposition 9.8.

Now we prove that TCn(S2k) = n. Take a generator u ∈ H2k(S2k) = Z and consider the element

w =

(
n−1∑
i=1

1⊗ · · · ⊗ 1⊗ u(ith place)⊗ 1⊗ · · · ⊗ 1

)
− 1⊗ · · · ⊗ 1⊗ (n− 1)u

in (H2k)⊗n((S2k)n).
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Note that w belongs to zero-divisor ideal. Furthermore,

w^n = n!(1− n)u⊗n 6= 0.

Here we use the fact that dimS2k is even. So, zcln(S2k) ≥ n, and hence TCn(S2k) ≥ n by
Theorem 10.2. Finally, TCn(S2k) ≤ n because the connectivity-dimension argument Proposi-
tion 9.3. q.e.d.

Now we show a few examples.

Examples 10.5.

1. We claim that zcln(S2k−1) = n− 1 and zcln(S2k) = n. In particular, zcln(Sm) = TCn(Sm) for
all m > 0. For S2k the clam is already proved in Theorem 10.4. Now we prove it for S2k−1. Take
a generator v ∈ H2k−1(S2k−1) = Z. Let pi : (S2k−1)n → S2k−1, i = 1, . . . , n be the projection on
i-th factor and put

vi = p∗i (v) ∈ H2k−1((S2k−1)n).

Let d : S2k−1 → (S2k−1)n be the diagonal. Then d∗(vi) = v, and vi − v1 is the zero divizor for all
i. So

(v2 − v1) ^ · · ·^ (vn − v1)

is the zero-divizor, and

(v2 − v1) ^ · · ·^ (vn − v1) = v2 ^ · · ·^ vn + v1V

for some V ∈ H(2k−1)(n−1)((S2k−1)n). Hence

(v2 − v1) ^ · · ·^ (vn − v1) 6= 0.

So, zcln(S2k−1) ≥ n− 1. Finally, zcln(S2k−1) ≤ TCn(S2k−1) = n− 1, and thus zcl(S2k−1) = n− 1.

2. More generally, for any path-connected CW space X and positive integers n and k we have
zcln(X × Sk) ≥ zcln(X) + n− 1. This inequality can be improved to zcln(X × Sk) ≥ zcln(X) + n
provided k is even and H∗(X) is torsion-free.
For the proof, see [BGRT, Theorem 3.10]

3. We claim that
TCn(Sk1 × · · · × Skm) = TCn(Sk1) + · · ·+ TCn(Skm)

= m(n− 1) + l

where l is the number of even dimensional spheres.
The last equality follows from Theorem 10.4. Now, we have

TCn(Sk1 × · · · × Skm) ≤ TCn(Sk1) + · · ·+ TCn(Skm)

by Proposition 9.2. On the other hand,

TCn(Sk1× · · · × Skm) ≥ zcln(Sk1 × · · · × Skm) (by Theorem 10.2)

≥ zcln(Sk1) + · · ·+ zcln(Skm) (by Proposition 10.3)

= TCn(Sk1) + · · ·+ TCn(Skm) (by item 1).
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So we get the first equality.

4. Let X be a CW complex of finite type, and R a principal ideal domain. Take u ∈ Hd(X;R)
with d > 0, d even, and assume that the n-fold iterated self R-tensor power um ⊗ · · · ⊗ um ∈
(Hmd(X;R))⊗n is an element of infinite additive order. Then TCn(X) ≥ mn.
For the proof, see [BGRT, Theorem 3.14].

5. For every closed simply connected symplectic manifold M2m we have TCn(M) = mn.
Indeed, TCn(M) ≥ mn because of item 4, and catM = m by Example 5.5, item 4. Thus

TCn(M) ≤ n catM = mn.

6. TCn(Tk) = k(n− 1).
This follows from Theorem 10.4 or Theorem 9.9.

We know that TCn(X) ≥ n − 1 for all X. Furthermore, if TC2(X) = 1 then X is homotopy
equivalent to S2k−1, [GLO]. However, we do not know if the similar fact holds for n > 2.

Open Question 10.6. Does the equality TCn(X) = n − 1, n > 2 imply that X is homotopy
equivalent to S2k−1?

For an information on spaces of topological complexity 2, see [BR].

11 Monoidal topological complexity

Consider robot motion planning with the following property: if the initial position of a robot in
the configuration space X coincides with the terminal position, then the algorithm keeps the robot
still. This leads to the notion of monoidal topological complexity, [IS].

Definition 11.1. The monoidal topological complexity TCM (X) is the least number m such that
there exists a cover of X ×X by m+ 1 open subsets Ai, i = 0, . . . ,m of X ×X with the following
property: each Ai has a local section si : Ai → PX for ζ = {PX → X×X} and, moreover: si(x, x)
is the constant path at x for all i and all x ∈ X.

Proposition 11.2 ([Dr1, IS]). We have

TC(X) ≤ TCM (X) ≤ TC(X) + 1

for all CW spaces X.

Open Question 11.3. Is it true that TCM (X) = TC(X) for all X?

12 Topological complexity of groups. Surfaces

Given a group π, let K(π, 1) be a path-connected space such that π1(K(π, 1)) = π and πi(K(π, 1)) =
0 for i > 1 (so-called Eilenberg–MacLane space). It is well-known that the homotopy type of a
CW space K(π, 1) is completely determined by π. Since TC is a homotopy invariant, we have a
correctly defined algebraic invariant

TC(π) : = TC(K(π, 1)).
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The simplest examples of K(π, 1)-manifolds are the circle S1, the orientable surfaces Sg, g > 0, and
non-orientable surfaces Ng, g > 1. Here g denotes the genus of the surface.

We already know that TC(T2) = 2. Furthermore, TC(Sg) = 4 for g > 1, [F2]. For the proof, look
the chain of inequalities

4 ≤ zcl(Sg) ≤ TC(Sg) ≤ 2 dimSg = 4.

(Pay attention that there is non-normalized complexity in [F2], so, the value at [F2] is one more
than usual one.)

The case of non-orientable surfaces is much more complicated. We have TC(RP2) = 3, [FTY]. For
Ng, g > 1 we have TC(Ng) = 4, it is given by Cohen and Vandembroucq [CV] with an essential
contribution of Costa and Faber [CF]. The case of g = 2, the Klein bottle, was considered as
a challenging problem, unlike the case g > 3. The proof uses bar-construction (bar-resolution),
crossed homomorphisms, and local coefficients.

Note that earlier Dranishnikov [DR2] proved that TC(Ng) = 4 for g > 3 in a slightly different
method.

Concerning TCn of surfaces for n > 2 we have the following result:

Theorem 12.1 ([GGGL]). Let S be a closed surface (orientable or not) different from the sphere
and the torus. Then TCn(S) = 2n provided n ≥ 3.

Surprisingly, the evaluation of TCn(Ng) for n > 2 is simpler than for n = 2. Another surprise is
that TC(RP2) = 3 while TCn(RP2) = 2n for n > 2.

In [FGLO] authors deal with the problem of understanding TC(π) more deeply, by using Bredon
equivariant cohomology. There are many interesting constructions that I do not want to present
here, but I show the following concrete result. Let D be the class of all subgroups of the group
π × π which are conjugate to the diagonal subgroup. Let cdD(π × π) denote the cohomological
dimension of π × π with respect to the class D.

Theorem 12.2. TC(π) ≤ max{3, cdD(π × π)}.

13 On sequences {TCn(X)}∞n=2

This section is based on [R6, Section 15].

When we introduce the invariants TCn, we have the following general question: Does the sequence
{TCn} gives more information than, say, the single invariant TC. The answer is positive. Indeed,

TC(S2) = TC(T2) = 2, TCn(S2) = n, TCn(T2) = 2n− 2.

Another point of interest is the behavior of the sequence {TCn(X)}. Here we have the following
proposition, [R6]

Proposition 13.1. For any finite CW space X the sequence {TCn(X)} grows almost linearly with
respect to n.
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This follows from the inequality TCn(X) ≤ catXn ≤ n catX.

Given X, we (can) introduce the power series (generating functions)

FX(z) =

∞∑
n=1

TCn+1(X)(zn)

and ask about analytical properties of them.

For example, for X = S2k+1 we have a rational function

FS2k+1 =

∞∑
n=1

nzn =
z

(1− z)2
.

(Note my typo in [R6, Example 15.3].)

Open Question 13.2. Do the power series

FX(z) =

∞∑
n=1

TCn+1(X)zn

represent rational functions?

In [FO, Section 8] it is shown that rationality holds for many important cases. Note that for all
spaces X as in [FO] we have

FX(z) =
PX(z)

(1− z)2

where PX(z) is an integer polynomial with P (1) = catX. However, there are examples with

FX(z) =
PX(z)

(1− z)2

but PX(1) 6= catX, see [FKS].
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[CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanré. Lusternik-Schnirelmann category. Mathemati-
cal Surveys and Monographs, 103. American Mathematical Society, Providence, RI, 2003.

[CF] A. Costa, M. Farber. Motion planning in spaces with small fundamental groups. Commun.
Contemp. Math. 12 (2010), no. 1, 107–119.

[DD] D. Davis, D. Recio-Mitter.The geodesic complexity of n-dimensional Klein bottles.
arXiv:1912.07411v1.

[D1] A.Dold. Partitions of unity in the theory of fibrations. Ann. of Math. (2) 78 (1963), 223–
255.

[D2] A. Dold. Lectures on algebraic topology, reprint of the 1972 edition. Classics in Mathemat-
ics, Springer-Verlag, Berlin, 1995.

[Dr1] A. Dranishnikov. Topological complexity of wedges and covering maps. Proc. Amer. Math.
Soc. 142 (2014), no. 12, 4365–4376.

[DR2] A. Dranishnikov. The topological complexity and the homotopy cofiber of the diagonal
map for non-orientable surfaces. Proc. Am. Math. Soc. 144 (11) (2017), 4999–5014.

[DR3] A. Dranishnikov. On topological complexity of non-orientable surfaces. Topology Appl. 232
(2017), 61–69.

[FH] E. Fadell, S. Husseini. Category weight and Steenrod operations. Papers in honor of José
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[Gon] J. González. Topological robotics in lens spaces, Math. Proc. Cambridge Philos. Soc. 139
(2005), no. 3, 469–485.
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